Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 14(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668308

RESUMO

Flavonoids and alkaloids are the major active ingredients in mulberry leaves that have outstanding medicinal value. Bacillus subtilis can effectively activate the plants defense response and regulate the plant secondary metabolism. In this study, we explored the effects of soil application of B. subtilis on the content of flavonoids and the most important alkaloids (1-deoxynojirimycin, DNJ) in mulberry leaves. Significant decreases in flavonoid content were observed in tender leaves and mature leaves after treatment with B. subtilis; at the same time, significant increases in DNJ content were observed in tender leaves. Based on widely targeted LC-MS/MS and high-throughput approaches, we screened out 904 differentially synthesized metabolites (DSMs) and 9715 differentially expressed genes (DEGs). KEGG analyses showed that these DSMs and DEGs were both significantly enriched in the biosynthesis of secondary metabolites, flavonoid synthesis and plant hormone signal transduction. Further correlation analysis of DEMs and DEGs showed that 40 key genes were involved in flavonoid biosynthesis, with 6 key genes involved in DNJ biosynthesis. The expression of CHS, CHI, F3H, F3'H, FLS, UGT and AOC significantly responded to B. subtilis soil application. This study broadens our understanding of the molecular mechanisms underlying the accumulation of flavonoids and alkaloids in mulberry leaves.

2.
Talanta ; 273: 125892, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493609

RESUMO

In this study, NIR quantitative prediction model was established for sensory score and physicochemical components of different varieties and quality grades of Yuezhou Longjing tea. Firstly, L, a, b color factors and diffuse reflection spectral data are collected for each sample. Subsequently, the original spectrum is preprocessed. Three techniques for selecting variables, CARS, BOSS, and SPA, were utilized to extract optimal feature bands. Finally, the spectral data extracted from feature bands were fused with L, a and b color factors to build SVR and PLSR prediction models. enabling the rapid non-destructive discrimination of different varieties and grades of Yuezhou Longjing tea. The outcomes demonstrated that BOSS was the best variable selection technique for sensory score and the distinctive caffeine wavelengths, CARS, however, was the best variable selection technique for catechins distinctive wavelengths. Additionally, the middle-level data fusion-based non-linear prediction models greatly outperformed the linear prediction models. For the prediction models of sensory score, catechins, and caffeine, the relative percent deviation (RPD) values were 2.8, 1.6, and 2.6, respectively, suggesting the good predictive ability of the models. In conclusion, evaluating the quality of the five Yuezhou Longjing tea varieties using near-infrared spectroscopy and data fusion have proved as feasible.


Assuntos
Catequina , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Chá/química , Cafeína , Modelos Lineares , Algoritmos , Análise dos Mínimos Quadrados
3.
J Agric Food Chem ; 71(40): 14706-14719, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37752697

RESUMO

Fermentation is the key technology for black tea aroma formation. The key aroma substances of black tea at different fermentation stages (unfermented (WDY), underfermented (F1H), fully fermented (F4H), and overfermented (F8H)) were characterized by the methodology of Sensomics. Aroma extract dilution analysis was performed on volatile fractions extracted by using solvent-assisted flavor evaporation and solid-phase microextraction, yielding 93 odor-active areas. Internal standard method plus stable isotope dilution analysis was used for quantitative analysis. The omission experiment identified 23 aroma substances. Further reduction and addition experiments revealed phenylacetaldehyde, (E,E)-2,4-heptadienal, geraniol, linalool, ß-damascenone, 2-methylbutyraldehyde, dimethyl sulfide, and isovaleraldehyde with odor activity values (OAV) > 100 as the characteristic aroma components of F4H and also as the main contributors to aroma differences between different fermentation degrees. The green odor of (E,E)-2,4-heptadienal was highlighted in WDY and F1H relative to that in F4H due to the lower contribution of phenylacetaldehyde and ß-damascenone in the former two samples. Additionally, excessive OAV increase of fatty aldehydes in F8H masked its similar floral and fruity aroma.

4.
Food Chem X ; 18: 100731, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37397192

RESUMO

This study fristly investigated the taste quality formation and leaf conducting tissue changes in six types of Chinese tea (green, black, oolong, yellow, white, and dark) made from Mingke No.1 variety. Non-targeted metabolomics showed the vital manufacturing processes (green tea-de-enzyming, black tea-fermenting, oolong tea-turning-over, yellow tea-yellowing, white tea-withering, and dark tea-pile-fermenting) were highly related to their unique taste formation, due to different fermentation degree in these processes. After drying, the retained phenolics, theanine, caffeine, and other substances significantly impacted each tea taste quality formation. Meanwhile, the tea leaf conducting tissue structure was significantly influenced by high processing temperature, and the change of its inner diameter was related to moisture loss during tea processing, as indicated by its significant different Raman characteristic peaks (mainly cellulose and lignin) in each key process. This study provides a reference for process optimization to improve tea quality.

5.
Foods ; 12(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444325

RESUMO

Fresh tea leaves, both single bud and one leaf with a bud, were used as the test materials in this study. The variation in the main mechanical properties, such as texture and tensile properties, during the processing of Longjing tea was examined by using texture profile analysis (TPA) and stress-strain tensile tests. The plasticity showed a trend of first increasing and then decreasing during the processing, whereas the elasticity displayed the opposite tendency. The flexibility reached a maximum during the fixing stage and then slowly declined with a relatively small change. Initially, the maximum force dropped down and then gradually elevated later.Both the tensile strength and the fracture strain indicated an upward movement at the beginning and then a downfall afterward. The elastic modulus changed little before the final panning stage, then raised significantly. The correlation analysis revealed that the flexibility of tea leaves was highly positively correlated with water content. At water content of 30% and 50%, the plasticity and flexibility of tea leaves reached a clear peak and the maximum force was at a low level, which is suitable for the shaping of Longjing tea. The results also demonstrated that the main mechanical properties of different tender materials change differently during the processing. The research findings can provide parameters for optimizing the mechanical design and processing technology of Longjing tea.

6.
Foods ; 12(12)2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37372642

RESUMO

In this study, the effects of different sun withering degrees (75% (CK), 69% (S69), 66% (S66), 63% (S63), and 60% (S60) water content in the withered leaves) on black tea sensory quality were investigated by means of sensory evaluation plus metabolomics analysis. Sensory evaluation results showed higher sensory quality scores for the black tea in S69-S66, due to better freshness, sweeter taste, and a sweet and even floral and fruity aroma. Additionally, 65 non-volatile components were identified using Ultra Performance Liquid Chromatography-Quadrupole-Time of Flight-Mass Spectrometry (UPLC-Q-TOF/MS). Among them, the content increase of amino acids and theaflavins was found to promote the freshness and sweetness of black tea. The aroma of tea was analyzed using combined Solvent Assisted Flavor Evaporation-Gas Chromatography-Mass Spectrometry (SAFE-GC-MS) and Headspace-Solid Phase Micro Extract-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS), and 180 volatiles were identified, including 38 variable importance in projection (VIP) > 1 (p < 0.05) and 25 Odor Activity Value (OAV) > 1 volatiles. Statistical analysis revealed 11 volatiles as potential major aroma differential metabolites in black tea with a different sun withering degree, such as volatile terpenoids (linalool, geraniol, (E)-citral, and ß-myrcene), amino-acid-derived volatiles (benzeneethanol, benzeneacetaldehyde, and methyl salicylate), carotenoid-derived volatiles (jasmone and ß-damascenone), and fatty-acid-derived volatiles ((Z)-3-hexen-1-ol and (E)-2-hexenal). Among them, volatile terpenoids and amino acid derived volatiles mainly contributed to the floral and fruity aroma quality of sun-withered black tea.

7.
Foods ; 12(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37107521

RESUMO

This study investigated the effect of different fermentation humidities (55%, 65%, 75%, 85% and 95%) on congou black tea quality and bioactivity. Fermentation humidity mainly affected the tea's appearance, aroma and taste quality. The tea fermented at low humidity (75% or below) showed a decrease in tightness, evenness and moistening degree, as well as a heavy grassy and greenish scent, plus a green, astringent and bitter taste. The tea fermented at a high humidity (85% or above) presented a sweet and pure aroma, as well as a mellow taste, plus an increase of sweetness and umami. With increasing fermentation humidity, the tea exhibited a drop in the content of flavones, tea polyphenols, catechins (EGCG, ECG) and theaflavins (TF, TF-3-G), contrasted by a rise in the content of soluble sugars, thearubigins and theabrownins, contributing to the development of a sweet and mellow taste. Additionally, the tea showed a gradual increase in the total amount of volatile compounds and in the content of alcohols, alkanes, alkenes, aldehydes, ketones and acids. Moreover, the tea fermented at a low humidity had stronger antioxidant activity against 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) and a higher inhibiting capability on the activities of α-amylase and α-glucosidase. Overall results indicated the desirable fermentation humidity of congou black tea should be 85% or above.

8.
Environ Sci Pollut Res Int ; 28(41): 58007-58017, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34101121

RESUMO

China has emerged as the world's largest pollutant emitter due to rapid industrialization and a remarkable economic upsurge in recent decades. Rising carbon emissions have exerted more social and regulatory pressure on Chinese corporations to undertake environmental protection investments. However, the implications of such investments on the financial fundamentals of a firm remain unclear. Especially, little is known about how environmental protection investments affect the performance of financially constrained firms. This study explores the mediating role of financial constraints in the nexus between corporate environmental protection investment and the accounting and market performance of Chinese listed firms during 2009-2016. The empirical outcomes of the generalized method of moments (GMM)-based regressions reveal that environmental investments of non-constrained firms have a positive impact on the accounting and market performance of such firms as measured by ROA and Tobin's q, respectively. Interestingly, environmental protection investments have a significant negative association with both (i.e., the accounting and market) performance proxies of firms that are facing financial constraints. These findings imply that in pursuit of environment preservation and pollution abatement, regulators shall provide more financial flexibility and enabling environment to financially constrained firms to optimize their role in pollution abatement. Besides, financially non-constrained firms shall be assigned greater environmental responsibility to undertake a proportionately higher environmental investment than financially constrained firms.


Assuntos
Investimentos em Saúde , Responsabilidade Social , China , Conservação dos Recursos Naturais , Poluição Ambiental
9.
Ying Yong Sheng Tai Xue Bao ; 31(4): 1163-1174, 2020 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-32530191

RESUMO

To investigate soil fertility status and characteristics of typical tea plantations, we selec-ted 372 typical tea plantations of 21 areas across Jiangxi Province and analyzed the soil nutrient, spatial data, and their correlations with topography, soil type, elevation and plantation age. The results showed that soil pH, organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen, total phosphorus and total potassium of tea plantation in Jiangxi reached 53.9%, 60.1%, 56.1%, 22.9%, 38.5%, 43.7%, 11.1% and 95.5% of indices of high fertility, high efficiency and high yield tea plantation, respectively, with the available phosphorus showing a strong variation. Soil available copper, zinc, iron, manganese and boron reached 76.3%, 74.2%, 96.8%, 73.1% and 0.0% of the first-class standards for soil trace elements, respectively. Tea plantations with highest soil fertility located in central Jiangxi, followed by northeastern and northwestern Jiangxi, and lowest in southern Jiangxi. Soil pH was significantly positively correlated with organic matter, alkaline nitrogen, available phosphorus, available potassium, total nitrogen and total phosphorus but not for total potassium. For different topography, soil fertility was highest in the flat land, followed by the high mountains, and lowest in the mountains and hills. Across different soil types, soil fertility was higher in paddy soil, sandy soil and mountain yellow brown soil, followed by yellow soil, red-yellow soil and purple soil, and lowest in red soil. Soil pH, organic matter and total potassium increased while available phosphorus decreased with altitude. The organic matter, alkaline nitrogen, available phosphorus, total nitrogen and total phosphorus increased, but soil pH decreased with time. In summary, soil fertility of tea plantations in Jiangxi Province was generally good, with high organic matter, total potassium, available copper, zinc, iron and manganese. However, soil was acidic, available phosphorus and total phosphorus content was low, available boron was seriously limited. We suggest increase soil pH and potassium supply in central Jiangxi, increase potassium and nitrogen fertilizer supply in northeastern Jiangxi, increase organic matter and phosphorus fertilizer supply in northwestern Jiangxi, and increase nitrogen, phosphorus and potassium supply combined with organic fertilizers in southern Jiangxi. High mountain tea plantations should enhance available phosphorus and potassium supply. Mountain tea plantations should enhance nitrogen and phosphate supply. Tea plantations with red and yellow soil should increase pH and total potassium supply. Tea plantations with red soil should apply nitrogen, phosphorus and potassium fertilizers combined with organic fertilizers. Tea plantations with yellow soil and mountain yellow brown soil required additional phosphorus supply, and tea plantations with purple soil should increase soil organic matter supply. Tea plantations need to increase dolomite powder, physiological alkaline fertilizers and organic fertilizers to prevent soil acidification.


Assuntos
Fertilizantes , Solo , China , Nitrogênio , Fósforo , Chá
10.
BMC Plant Biol ; 20(1): 216, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410639

RESUMO

BACKGROUND: Camellia sinensis 'Huangjinju' is an albino tea variety developed recently in China. Young leaves of 'Huangjinju' demonstrate bright yellow when cultivated under natural sunlight, but regreens under reduced light intensity. To elucidate the physiological and molecular mechanisms of this light-sensitive albinism, we compared leaf pigmentation, metabolites, cellular ultrastructure and transcriptome between plants cultured under natural sunlight and shade. RESULTS: Shading treatment doubled the chlorophyll concentration and regreened albino leaves; carotenoid also increased by 30%. Electron microscopy analyses showed that chloroplast not only increased in number but also in size with a complete set of components. In addition, regreened leaves also had a significantly higher concentration of polyphenols and catechins than albino leaves. At transcriptomic level, a total of 507 genes were differentially expressed in response to light condition changes. The most enriched pathways include light harvest protein complex, response to stimuli, oxidation-reduction process, generation of precursor metabolites and energy response. CONCLUSION: The integrated strategy in this study allows a mechanistic understanding of leaf albinism in light-sensitive tea plants and suggested the regulation of gene networks involved in pigmentation and protein processing. Results from this study provide valuable information to this area and can benefit the domestication and artificial breeding to develop new albino tea varieties.


Assuntos
Camellia sinensis/fisiologia , Regulação da Expressão Gênica de Plantas , Luz , Fotossíntese , Pigmentação/genética , Transcriptoma , Camellia sinensis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cor , Perfilação da Expressão Gênica , Folhas de Planta/metabolismo , Transdução de Sinais
11.
Brain Res ; 1650: 232-242, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27637156

RESUMO

Post-stroke cognitive impairment (PSCI), commonly seen in the clinical practice, is a major factor impeding patient rehabilitation. Enriched environment (EE) intervention is a simple and effective way to improve cognitive impairment, partially due to the rebalancing of the basal forebrain-hippocampus cholinergic signaling pathway. Epigenetic changes have been identified in many cognitive disorders. However, studies on the effects of EE on epigenetic regulation of cholinergic circuits in PSCI animal models have not yet been reported. In this study, we established a photothrombotic mouse PSCI model and showed that after EE intervention, mice with PSCI had significantly improved water maze performance, better induction of hippocampal long-term potentiation (LTP), enhanced function of the basal forebrain-hippocampus cholinergic circuits of contralateral side of stroke and relatively balanced acetylation homeostasis compared to those of PSCI mice in standard environments (SE). In addition, PSCI mice in EE expressed much higher levels of p-CREB and CBP than in SE, and the chromatins bound to M-type promoter of ChAT gene were more acetylated. These results demonstrate that EE plays an important role in the improvement of PSCI and the underlying mechanism may involve in the acetylation of histones bound to the ChAT gene promoter in cholinergic circuits.


Assuntos
Neurônios Colinérgicos/fisiologia , Disfunção Cognitiva/terapia , Acidente Vascular Cerebral/terapia , Acetilação , Acetilcolina/metabolismo , Animais , Colinérgicos/uso terapêutico , Cromatina , Transtornos Cognitivos/metabolismo , Modelos Animais de Doenças , Meio Ambiente , Epigênese Genética , Hipocampo/metabolismo , Histonas/metabolismo , Homeostase/fisiologia , Potenciação de Longa Duração , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Acidente Vascular Cerebral/metabolismo
12.
J Proteome Res ; 9(11): 5827-36, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20836566

RESUMO

An important issue in epigenetic research is to understand how the numerous methylation marks associated with histone and certain nonhistone proteins are recognized and interpreted by the hundreds of chromatin-binding modules (CBMs) in a cell to control chromatin state, gene expression, and other cellular functions. We have assembled a peptide chip that represents known and putative lysine methylation marks on histones and p53 and probed the chip for binding to a group of CBMs to obtain a comprehensive interaction network mediated by lysine methylation. Interactions revealed by the peptide array screening were validated by in-solution binding assays. This study not only recapitulated known interactions but also uncovered new ones. A novel heterochromatin protein 1 beta (HP1ß) chromodomain-binding site on histone H3, H3K23me, was discovered from the peptide array screen and subsequently verified by mass spectrometry. Data from peptide pull-down and colocalization in cells suggest that, besides the H3K9me mark, H3K23me may play a role in facilitating the recruitment of HP1ß to the heterochromatin. Extending the peptide array and mass spectrometric approach presented here to more histone marks and CBMs would eventually afford a comprehensive specificity and interaction map to aid epigenetic studies.


Assuntos
Histonas/análise , Lisina/metabolismo , Proteína Supressora de Tumor p53/análise , Homólogo 5 da Proteína Cromobox , Epigenômica , Histonas/metabolismo , Humanos , Metilação , Análise Serial de Proteínas , Ligação Proteica , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA